THE CERAMIC MATERIALS GROUP

What We Do

Our team has more than 10 years of interdisciplinary research experience in various fields such as materials science and engineering, crystallography, chemical engineering and geology. We are committed to solving your most challenging problems. Our state of the art laboratory is equipped for advanced R&D research as well as custom analyses. We specialize in ambient and non-ambient high temperature X-ray diffraction, crystallography, thermal analyses (TG, DSC, DTA, Dilatometry), spectrometry UV-Vis and MS, and gas chromatography and degradation of pollutants. Our approach is to combine various techniques to solve some of the most complex questions in advanced materials characterization.   

 

CHARACTERIZATION

State of the art XRD: D8 Advance

•Ordinarily equipped with Cu radiation tube D8 has five different configurations
•Two thermal cameras with three temperature stages
•MRI Wide Range camera
•Temperature range -180°C to 450°C
•Temperature range 25°C to 1600°C
•Anton Paar XRK900 reaction chamber
•Temperature range 25°C to 900°C
•Controlled atmosphere
•Capillary stage with a Ag tube
•Automatic sample changer
•9 samples
•Ambient temperature

DSC-TG: Perkin-Elmer STA6000

Simultaneous Thermal Analyzer (STA) simultaneously measures weight loss i.e. the loss of volatile species (TG), while through Differential Scanning Calorimetry (DSC) or Differential Thermal Analysis (DTA) we observe phase transitions that may occur up to 1000 °C. Available atmospheres: N2, O2, and Air

Dilatometry: DIL 402C-NETZSCH

Determines the thermal expansion coefficient of different materials and it allows us to observe sintering phase transitions up to 1500°C

Mass Spectrometry: 
OMNISTAR/THERMOSTAR -GSD 320 O3

ThemoStar was specifically developed for couplilng with equipement operating at high temperatures like XRD and DSC.  Gas inlet is equipped with stainless steel capillary.

 

SYNTHESIS, FOTOCATALYSIS, GAS CHROMATOGRAPHY AND SPECTROPHOTOMETRY

Low temperature synthesis

Berghof autoclave, High-pressure laboratory reactor BR-300 is used for the synthesis of fotocatalysts at low temperatures up to 200°C.

Photodegradation of pollutants, gases (NOx, SOx) and liquids (fenol, dyes etc.)

In house photodegradation system coupled with GC-MS spectrometer Agilent 7890A-5975C. The sysem measures the degradation of pollutants.

UV-Vis spectroscopy

Agilent UV-Vis spectrophotometer, model 8453, is used to identify compounds by observing the absorption bands in the range of 190 nm to 1100 nm.

 

DRS spectroscopy

Diffuse Reflectance spectroscopy. Perkin Elmer model lambda 650, operates in the range of 190 - 900 nm and is used to determine the banned semiconductor band.

 

SERVICES

Thermal analyses and spectroscopy

Services

Satisfaction Guaranteed

We offer a range of ambient and thermal analyses. Our services include both ambient and non-ambient high temperature XRD analyses at set heating rates and temperatures and in various atmospheres. These analyses show phase transitions and transformations and structural collapse of various materials. These transitions can further be acompanied by DSC/TG and dilatometry. Our team is highly qualified in characterization and thus we offer in depth crystallographic analyses of crystalline materials and nanomaterials. Also, our laboratory is equipped with a state-of-the-art GC/MC system for measuring the abatement of NOx and SOx polluting gases and polluting liquids (phenol, dyes, etc.). Other services include X-ray diffraction at low temperatures (up to -150 ° C), UV-VIS and DRS.

DRX Phase transitions_canvas.png
 

PEOPLE

A Collaborative & Diverse Group

Prof. Dr. Bojan Marinkovic

Principle Investigator

Dr. Anja Dosen

Principal Research Scientist

 

STUDENTS

Get to Know Us

PhD

Margarita Habran 
Patricial Pontón
Luciana Prisco

PhD

Luciano Monteiro Rodrigues

MSc

Juliana Bento Viol
Juliana Marques Resende
Alexandre Roberto Soares
Luciana Prates Prisco
Marco Antonio de Abreu

MSc

Isabella Loureiro Muller Costa
Alison Tatiana Madrid Sani
Lucas Araujo Lima Almeida
Mayara Guilherme Marzano

Iniciação científica

Gabriella Faro 
Leonardo Ewbank

 

RECENT PROJECTS

Densification of Ceramic Thermomiotic Materials with Improved Thermal Stress Properties

ARL: 2017-current

It is common knowledge that most solids change their dimensions when the temperature changes. Usually, the dimensions increase with increasing temperature, and this is referred to as positive thermal expansion (PTE). This thermally induced change in dimension of a material, in a confined environment, can lead to significant mechanical stress. If the stress exceeds the strength of the material, the material will shatter owing to the propagation of microcracks, quite possibly with disastrous consequences. On the other hand, very few materials shrink with increasing temperature, giving rise to negative thermal expansion (NTE), while in some even more rare cases dimension does not change at all, causing an uncommon phenomenon denominated zero thermal expansion (ZTE). The excitement about thermomiotic materials (negative thermal expansion materials) is that, in principle, they could compensate for PTE, presenting materials that would not experience thermal stress fracture. The ZrW2O8 phase, a member of AM2O8 ceramic family, was the first ceramic phase exhibiting large negative thermal expansion (i.e., thermomiotic behavior) over a very wide temperature range, and this discovery was followed by recognition of similarly unusual thermal expansion (negative, near-zero or low-positive) in a few structurally related ceramic families awakened interest in these materials due to their exotic nature and potential applications. The physics and crystallography underlying this thermal feature have been widely studied since 1996..

Investigação de catalisadores de refino e suas transformações térmicas por Difração de Raios-X in situ

Petrobras: 2017-current

A técnica de DRX in situ permite estudo de processos químicos em diferentes temperaturas e atmosferas, p. ex.: vapor d'agua, apresentando também a possibilidade de se acompanhar composição química de gases liberados depois da reação, por meio de um espetrômetro de massas. Aquisição de dados de catalisadores, seus ingredientes ou precursores submetidos a temperaturas elevadas e atmosferas controladas, permite acompanhamento da cinética de transformação de fases sob condições que representem ou simulem a fabricação e/ou o emprego industrial do catalisador. Portanto, no escopo deste Termo de Cooperação serão elucidados processos importantes na indústria tais como os processos de abatimento de gases do tipo SOx com as modificações estruturais dos aditivos utilizados para este propósito no processo de FCC, bem como associar o nível de conversão de gás natural (metano) e seus produtos às transformações cristalinas do respectivo catalisador. Além disso, será estudada a evolução da estrutura cristalina em zeólitas tipo Y e BETA durante tratamentos pós-síntese que promovam o aumento de sua mesoporosidade, bem como serão obtidos conhecimentos acerca da estabilidade térmica e hidrotérmica destes materiais, sendo também investigados os mecanismos de desativação e regeneração de catalisadores de reforma à base de níquel em alta temperatura sob atmosferas variadas.

Development of ceramic bulk materials and coatings with near zero thermal expansion and polymer nanocomposites with controllable thermal expansion

ARL: 2015-2016

This project seeks a comprehensive understanding of the relationship between microstructure (e.g.: mean grain size and porosity) and thermal (coefficient of thermal expansion and thermal conductivity) and mechanical (Young modulus, modulus of rupture, Weibull modulus) properties of ceramic bulks of low positive Al2W3O12 (CTE = 1.75 x 10-6 K-1) and near zero ZrMgMo3¬O12 (CTE = 1.00 x 10-7 K-1) phases. As a consequence, thermal shock resistance potential of this new class of thermomiotics and related phases will be evaluated for the first time. Also coatings of near zero ZrMgMo3¬O12 above metal substrates will be developed and their wear properties evaluated. This project also searches to correlate all steps of Al2W3O12 nanopowder preparation, including drying, chemical surface treatment, functionalization of matrix and pre-processing and processing parameters of melt-compounding in order to develop thermoplastic polymer with considerable reduced CTE without increase of weight and decrease of transparency.

Aplicação de Difração de Raios-X para caracterização in situ de catalisadores industriais e seu desenvolvimento

Petrobras: 2014-2017

O objetivo deste projeto de P&D é aplicar Difratômetro de Raios-X com tecnologia de ponta, adquirido em investimento recente de infraestrutura neste programa, na investigação de materiais cristalinos visando ao desenvolvimento de catalisadores mais ativos e resistentes para a Indústria de Refino e Petroquímica com enfoque no processo de FCC para aumento da produção de derivados combustíveis. Objetivos específicos: (i) Estudar as transformações de estrutura cristalina em catalisadores e aditivos de FCC quando submetidos a condições de desativação hidrotérmica na presença de metais contaminantes; (ii) Investigar a evolução da estrutura cristalina em zeólitas durante sua síntese e quando submetidas a condições de desativação hidrotérmica; (iii) Estudar a transformação térmica e hidrotérmica de aluminas e seus precursores cristalinos com foco no aumento da resistência a níquel em catalisadores de FCC e aumento de atividade em catalisadores para polietileno.

 

RECENT PUBLICATIONS

The Fruits of Our Labor

DINIC, IVANA Z. ; MANCIC, LIDIJA T. ; RABANAL, MARIA EUGENIA ; YAMAMOTO, KAZUHIRO ; OHARA, SATOSHI ; TAMURA, SAYAKA ; KOJI, TOMITA ; COSTA, ANTONIO M.L.M. ; MARINKOVIC, BOJAN A. ; MILOSEVIC, OLIVERA B. . Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis. Advanced Powder Technology (Print), v. 28, p. 73-82, 2017.


PÓNTON, PATRICIA I. ; PRISCO, LUCIANA P. ; DOSEN, ANJA ; FARO, GABRIELLA S. ; DE ABREU, MARCO A.S. ;MARINKOVIC, BOJAN A. Co-precipitation synthesis of Y2W3O12 submicronic powder. Ceramics International, v. 43, p. 4222-4228, 2017.

DOSEN, ANJA ; PÓNTON, PATRICIA I ;MARINKOVIC, BOJAN A. Thermally induced phase transformations of lepidocrocite-like ferrititanate nanosheets synthesized from a low cost precursor by hydrothermal method. Materials Chemistry and Physics, v. 197, p. 138-144, 2017.

MENDONÇA, R. ;PARAGUASSU, W.; MENDES FILHO, J. ; MARINKOVIC, B. A. ; SOUZA FILHO, A. G. ; MACZKA, M. ; FREIRE, P. T. C. . Pressure-induced structural transformations in In2-xYx(MoO4)3 systems. Journal of Raman Spectroscopy, v. 47, p. 350-356, 2016.

JARDIM, P.M. ; GARCIA, E.S. ; MARINKOVIC, BOJAN A . Young-s modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions. Ceramics International, v. 42, p. 5211-5217, 2016.

Citações:1|2

PRISCO, LUCIANA P. ; PÓNTON, PATRICIA I. ; GUAMÁN, MARCO V. ; AVILLEZ, ROBERTO R. ; ROMAO, CARL P. ; JOHNSON, MICHEL B. ; WHITE, MARY ANNE; MARINKOVIC, BOJAN A . Assessment of the Thermal Shock Resistance Figures of Merit of Al W O , a Low Thermal Expansion Ceramic. Journal of the American Ceramic Society, v. 99, p. 1742-1748, 2016.

Citações:2|2


MANCIC, LIDIJA; PÓNTON, PATRICIA I ; LETICHEVSKY, SONIA ; COSTA, ANTONIO M. ; MARINKOVIC, BOJAN A ; RIZZO, FERNANDO C. . Application of silane grafted titanate nanotubes in reinforcing of polyamide 11 composites. Composites. Part B, Engineering, v. 93, p. 153-162, 2016.

Citações:3|3

DE SÁ, DRUVAL S. ; MARINKOVIC, BOJAN A. ; ROMANI, ERIC C. ; DEL ROSSO, TOMMASO ; DE SOUZA, RODRIGO O. M. A. ; MASSI, ALESSANDRO ; PANDOLI, OMAR. Prototyping of meso- and microfluidic devices with embedded TiO photocatalyst for photodegradation of an organic dye. J Flow Chem, v. 6, p. 101-109, 2016.

PRISCO, LUCIANA P. ;PÓNTON, PATRICIA I.; PARAGUASSU, WALDECI ; ROMAO, CARL P. ; WHITE, MARY ANNE ; MARINKOVIC, BOJAN A . Near-zero thermal expansion and phase transition in In0.5(ZrMg)0.75Mo3O12. Journal of Materials Research, v. 31, p. 3240-3248, 2016.

ROMAO, CARL P. ; MARINKOVIC, BOJAN A. ; WERNER-ZWANZIGER, ULRIKE ; WHITE, MARY ANNE . Thermal Expansion Reduction in Alumina-Toughened Zirconia by Incorporation of Zirconium Tungstate and Aluminum Tungstate. Journal of the American Ceramic Society, v. 98, p. 2858-2865, 2015.

 

COLLABORATION

 

Petróleo Brasileiro S.A.

Dalhousie University, Canada

University of Belgrade, Serbia

United States Army Research Laboratory

Escuela Politécnica Nacional, Ecuador

CONTACT US

Thanks for your interest in our research. Get in touch with us for any questions or comments regarding our work and publications. We’d love to hear from you.

(21) 3527-1954

 

(21) 3527-1954

Gávea, Rio de Janeiro - State of Rio de Janeiro, 22451-000, Brazil

©2018 by Ceramic Materials Group. Proudly created with Wix.com

This site was designed with the
.com
website builder. Create your website today.
Start Now